Color

Maneesh Agrawala

CS 448B: Visualization Fall 2017

Last Time: Deconstructing Visualizations

Example 1: Pew Research

Are People Better Off in Free
Market Economy?

	Disagree	Agree
Brazil	22	75
China	19	74
Germany	29	69
u.s.	24	67
Lebanon	34	62
India	25	61
Britain	32	61
France	43	58
Turkey	21	55
Poland	37	53
Italy	30	50
Egypt	45	50
Czech Rep.	46	50
Pakistan	36	48
Russia	40	47
Spain	52	47
Greece	50	44
Jordan	54	43
Tunisia	37	42
Japan	60	38
Mexico	60	34
PEW RESEARCH CENTER Q26.		

Skepticism for capitalism is lowest in Brazil (22\%), China (19\%), Germany (29\%) (although East Germans are less supportive than West Germans) and the U.S. (24\%). Skepticism for free markets is highest in Mexico (60\%) and Japan (60\%).

Example 1: Pew Research

Are People Better Off in Free
Market Economy?

ew research center q26

Final project

New visualization research or data analysis

- Pose problem, Implement creative solution
- Design studies/evaluations

Deliverables

- Implementation of solution
- 6-8 page paper in format of conference paper submission
- Project progress presentations

Schedule

- Project proposal: Mon 11/5
- Project progress presentation: $11 / 12$ and $11 / 14$ in class ($3-4 \mathrm{~min}$)
- Final poster presentation: 12/5 Location: Lathrop 282
- Final paper: 12/9 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Color

Color in Visualization

Identify, Group, Layer, Highlight

Purpose of Color

To label
To measure
To represent and imitate
To enliven and decorate
"Above all, do no harm."

- Edward Tufte

Topics

Color Perception
Color Naming
Using Color in Visualization

Color Perception

Physical World, Visual System, Mental Models

Physical World

Light is radiation in range of wavelengths

Light of single wavelength is monochromatic

Retina

Cone Response

Integrate cone response with input

Computing Cone Response

Integrate cone response with input

Opponent processing

LMS are linearly combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

Fairchild

Opponent processing

LMS are combined to create:
Lightness
Red-green contrast
Yellow-blue contrast

Experiments:
No reddish green, no bluish yellow Color after images

CIE LUV and LAB color spaces

Standardized in 1976 to mathematically represent opponent processing theory

Axes of CIE LAB

Correspond to opponent signals
L* = Luminance
$\mathbf{a}^{*}=$ Red-green contrast
b* = Yellow-blue contrast
Scaling of axes to represent "color distance" JND = Just noticeable difference (2.3 units)

Pseudo-Percepłual Color Spaces

Lightness

Hue, Value, Chroma

Psuedo-Percepłual Models

HLS, HSV, HSB
NOT percepłual models
Simple re-notation of RGB
\square View along gray axis

- See a hue hexagon

- L or \mathbf{V} is grayscale pixel value

Cannot predicł perceived lightness

Percepłual brightness

Color palette

HSL Lightness
(Photoshop)

Percepłual brightness

Simultaneous Contrast

The inner and outer thin rings are the physical purple

Simultaneous Contrast

Simultaneous Contrast

Color Appearance

More than a single color

- Adjacent colors (background)
- Viewing environment (surround)

Appearance effects
\square Adaptation
\square Simultaneous contrast

- Spatial effects Color in context

Color Appearance Models
surround

Mark Fairchild

Bezold Effect

Crispening

Perceived difference depends on background

From Fairchild, Color Appearance Models

Spreading

Adjacent colors blend

Spatial frequency

- The paint chip problem
- Small text, lines, glyphs
\square Image colors

Redrawn from Foundations of Vision © Brian Wandell, Stanford University

Color Naming

What color is this?

What color is this?

"Yellow"

What color is this?

What color is this?

"Blue"

What color is this?

What color is this?

"Teal" ?

Colors according to XKCD...

Basic color terms

Chance discovery by Brent Berlin and Paul Kay

Basic color terms

Chance discovery by Brent Berlin and Paul Kay

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay Initial study in 1969 Surveyed speakers from 20 languages Literafure from 69 languages

World color survey

World color survey

World color survey

Naming information from 2616 speakers from 110 languages on 330 Munsell color chips

Results from WCS (Mexico)

Language \#98 (Tlapaneco)
Mutual info $=0.942 /$ Contribution $=0.524$

Results from WCS (South Pacific)

Mutual info $=0.939 /$ Contribution $=0.487$

Language 24 (Chavacano)
Mutual info $=0.939 /$ Contribution $=0.513$

Universal (?) Basic Color Terms

Basic color terms recur across languages
\square White \square Red $\quad \square$ Pink
\square Grey \square Yellow \square Brown
\square Black \square Green \square Orange

\square Blue $\quad \square$ Purple

Evolution of Basic Color Terms

Proposed universal evolution across languages

Earliest \qquad Evolution of color names

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors

Rainbow color ramp

We associate and group colors together, often using the name we assign to the colors

Naming affects color perception

Color name boundaries

Color naming models

[Heer \& Stone]
Model 3 million responses from XKCD survey
Bins in LAB space sized by saliency:
How much do people agree on color name?

Modeled by entropy of p(name / color)

Icicle tree with colors

Using Color in Visualization

Gray's Anatomy

Superficial dissection of the right side of the neck, showing the carotid and subclavian arteries http://www.bartleby.com/107/illus520.html

Molecular Models

Organic Chemistry Molecular Model Set https//www.indigo.com/models/gphmodel/62003.html

Product Categories

Created by Tableau - Visual Analysis for Databases ${ }^{\text {TM }}$

Grouping, Highlighting

	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z
red	25.37	13.70	0.05	26.27	14.13	0.04	18.41	10.16	0.05	17.43	9.30	0.00
green	22.14	51.24	0.35	20.68	49.17	0.44	21.11	46.00	0.20	16.36	37.95	0.12
blue	13.17	3.71	74.89	15.38	5.20	86.83	11.55	3.37	65.53	9.96	3.44	56.14
gray	63.46	73.30	78.05	64.66	71.99	90.08	52.96	62.49	67.99	45.54	53.65	58.14
black	0.66	0.70	0.77	0.63	0.66	1.09	0.47	0.58	0.70	0.44	0.54	0.71
	X	Y	Z	X	Y	Z	X	Y	Z	X	Y	Z
red	25.37	13.70	0.05	26.27	14.13	0.04	18.41	10.16	0.05	17.43	9.30	0.00
green	22.14	51.24	0.35	20.68	49.17	0.44	21.11	46.00	0.20	16.36	37.95	0.12
blue	13.17	3.71	74.89	15.38	5.20	86.83	11.55	3.37	65.53	9.96	3.44	56.14
gray	63.46	73.30	78.05	64.66	71.99	90.08	52.96	62.49	67.99	45.54	53.65	58.14
black	0.66	0.70	0.77	0.63	0.66	1.09	0.47	0.58	0.70	0.44	0.54	0.71

Palette Design + Color Names

Minimize overlap and ambiguity of color names

Color Name Distance

Tableau-10

					Salience		Name	
.00	0.98	1.00	1.00	1.00	1.00	0.20	.47	blue 62.9%
.97	1.00	1.00	1.00	1.00	0.96	1.00	.90	orange 93.9%
.00	1.00	1.00	1.00	1.00	0.90	0.99	.67	green 79.8%
.00	1.00	0.95	0.99	1.00	1.00	1.00	.66	red 80.4%
.00	$\mathbf{0 . 0 0}$	0.96	0.91	0.97	1.00	0.99	.47	purple 51.4%
.95	0.96	$\mathbf{0 . 0 0}$	0.97	0.93	0.98	1.00	.37	brown 54.0%
.99	0.91	0.97	$\mathbf{0 . 0 0}$	1.00	1.00	1.00	.58	pink 71.7%
.00	0.97	0.93	1.00	$\mathbf{0 . 0 0}$	1.00	1.00	.67	grey 79.4%
.00	1.00	0.98	1.00	1.00	$\mathbf{0 . 0 0}$	1.00	.18	yellow 31.2%
.00	0.99	1.00	1.00	1.00	1.00	$\mathbf{0 . 0 0}$.25	blue 25.4%

http://vis.stanford.edu/color-names

Palette Design + Color Names

Minimize overlap and ambiguity of color names

Mapping Data to Color (Rainbows)

Avoid rainbow color maps!

1. People segment colors into classes
2. Hues are not naturally ordered
3. Different lightness emphasizes certain scalar values
4. Low luminance colors (blue) hide high frequencies

Rainbow vs. Diverging Color Scale

[Borkin 11]

Rainbow vs. Diverging Color Scale

Fig. 7. Average percent of low ESS regions identified broken down by 2D and 3D representation, and color. Error bars correspond to the standard error and the asterisks indicate results of statistical sig nificance. Participants were more accurate in 2D and when using the diverging color map.

Phase Diagrams (hue scale)

Singularities occur where all colors meet

The optical singularities of bianisotropic crystals, by M. V. Berry

Phases of the Tides

Figure 1.9. Cotidal chart. Tide phases relative to Greenwich are plotted for all the world' s oceans. Phase progresses from red to orange to yellow to green to blue to purple. The lines converge on anphidromic points, singularities on the earth's surface where there is no defined tide. [Winfree, 1987 \#1195 , p. 17].

Quantitative color encoding

Sequential color scale
Constrain hue, vary luminance/saturation
Map higher values to darker colors

Diverging color scale

Useful when data has a meaningful "midpoint"
Use neutral color (e.g., grey) for midpoint
Use saturated colors for endpoints
Limit number of steps in color to 3-9

Color Brewer

Sequential color scheme

Sequential color scheme

Design of sequential color scales

Hue-Lightness (Recommended)
Higher values mapped to darker colors
ColorBrewer schemes have 3-9 steps
Hue Transition
Two hues
Neighboring hues interpolate better
Couple with change in lightness

Diverging color scheme

Diverging color scheme

Diverging color scheme

Hue Transition

Carefully handle midpoint

- Critical class

Low, Average, High
'Average' should be gray

- Critical breakpoint

Defining value e.g. 0
Positive $\&$ negative should use different hues
Extremes saturated, middle desaturated

Classing quantitative data

Age-adjusted mortality rates for the United States

Hints for the colorist

Use only a few colors (~6 ideal)
Colors should be distinctive and namable Get it right in black and white Respect the color blind

