

Maneesh Agrawala

CS 448B: Visualization Fall 2017

Final project

New visualization research or data analysis

- Pose problem, Implement creative solution
- Design studies/evaluations

Deliverables

- Implementation of solution
- 6-8 page paper in format of conference paper submission
- Project progress presentations

Schedule

- Project proposal: Mon 11/5
- Project progress presentation: 11/12 and 11/14 in class (3-4 min)
- Final poster presentation: 12/5 Location: Lathrop 282
- Final paper: 12/9 11:59pm

Grading

- Groups of up to 3 people, graded individually
- Clearly report responsibilities of each member

Color in Visualization

Identify, Group, Layer, Highlight

Purpose of Color

To label To measure To represent and imitate To enliven and decorate

"Above all, do no harm."

- Edward Tufte

Topics

Color Perception Color Naming Using Color in Visualization

Color Perception Physical World, Visual System, Mental Models

CIE LUV and LAB color spaces

Standardized in 1976 to mathematically represent opponent processing theory

Axes of CIE LAB

Correspond to opponent signals

- L^{*} = Luminance
- a* = Red-green contrast
- **b**^{*} = Yellow-blue contrast

Scaling of axes to represent "color distance" JND = Just noticeable difference (~2.3 units)

Basic color terms

Chance discovery by Brent Berlin and Paul Kay

Basic Color Terms

Chance discovery by Brent Berlin and Paul Kay

Initial study in 1969 Surveyed speakers from 20 languages Literature from 69 languages

Evolution of Basic Color Terms

Molecular Models

Organic Chemistry Molecular Model Set http://www.indigo.com/models/gphmodel/62003.html

Grouping, Highlighting												
	Х	Y	Z	Х	Y	Z	Х	Y	Z	Х	Y	Z
red	25.37	13.70	0.05	26.27	14.13	0.04	18.41	10.16	0.05	17.43	9.30	0.00
green	22.14	51.24	0.35	20.68	49.17	0.44	21.11	46.00	0.20	16.36	37.95	0.12
blue	13.17	3.71	74.89	15.38	5.20	86.83	11.55	3.37	65.53	9.96	3.44	56.14
gray	63.46	73.30	78.05	64.66	71.99	90.08	52.96	62.49	67.99	45.54	53.65	58.14
black	0.66	0.70	0.77	0.63	0.66	1.09	0.47	0.58	0.70	0.44	0.54	0.71
	Х	Y	Z	Х	Y	Z	Х	Y	Z	Х	Y	Z
red	25.37	13.70	0.05	26.27	14.13	0.04	18.41	10.16	0.05	17.43	9.30	0.00
green	22.14	51.24	0.35	20.68	49.17	0.44	21.11	46.00	0.20	16.36	37.95	0.12
blue	13.17	3.71	74.89	15.38	5.20	86.83	11.55	3.37	65.53	9.96	3.44	56.14
gray	63.46	73.30	78.05	64.66	71.99	90.08	52.96	62.49	67.99	45.54	53.65	58.14
black	0.66	0.70	0.77	0.63	0.66	1.09	0.47	0.58	0.70	0.44	0.54	0.71
				_	_						_	

Palette Design + Color Names

Minimize overlap and ambiguity of color names

		Distanc	-							Salience	Name
0.00	1.00	1.00	1.00	0.98	1.00	1.00	1.00	1.00	0.20	.47	blue 62.9%
1.00	0.00	1.00	0.97	1.00	1.00	1.00	1.00	0.96	1.00	.90	orange 93.9%
1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.90	0.99	.67	green 79.8%
1.00	0.97	1.00	0.00	1.00	0.95	0.99	1.00	1.00	1.00	.66	red 80.4%
0.98	1.00	1.00	1.00	0.00	0.96	0.91	0.97	1.00	0.99	.47	purple 51.4%
1.00	1.00	1.00	0.95	0.96	0.00	0.97	0.93	0.98	1.00	.37	brown 54.0%
1.00	1.00	1.00	0.99	0.91	0.97	0.00	1.00	1.00	1.00	.58	pink 71.7%
1.00	1.00	1.00	1.00	0.97	0.93	1.00	0.00	1.00	1.00	.67	grey 79.4%
1.00	0.96	0.90	1.00	1.00	0.98	1.00	1.00	0.00	1.00	.18	yellow 31.2%
0.20	1.00	0.99	1.00	0.99	1.00	1.00	1.00	1.00	0.00	.25	blue 25.4%
Tablea	au-10						A	verage	0.97	.52	

Palette Design + Color Names

Minimize overlap and ambiguity of color names

0.00	1.00	1.00	0.89	0.07	1.00	0.35	0.99	1.00	0.89	.30	blue 50.5%
1.00	0.00	0.99	1.00	1.00	0.92	1.00	0.84	0.98	0.99	.21	red 27.8%
1.00	0.99	0.00	1.00	0.98	1.00	1.00	1.00	0.17	1.00	.34	green 36.89
0.89	1.00	1.00	0.00	0.98	1.00	0.71	0.93	1.00	0.32	.55	purple 67.3
0.07	1.00	0.98	0.98	0.00	1.00	0.36	1.00	0.97	0.95	.20	blue 36.6%
1.00	0.92	1.00	1.00	1.00	0.00	1.00	0.97	0.99	1.00	.39	orange 51.9
0.35	1.00	1.00	0.71	0.36	1.00	0.00	0.95	0.92	0.42	.13	blue 15.7%
0.99	0.84	1.00	0.93	1.00	0.97	0.95	0.00	0.98	0.85	.16	pink 29.4%
1.00	0.98	0.17	1.00	0.97	0.99	0.92	0.98	0.00	0.97	.12	green 21.79
0.89	0.99	1.00	0.32	0.95	1.00	0.42	0.85	0.97	0.00	.30	purple 23.9
xcel	.10						A	verage	0.87	.27	

http://vis.stanford.edu/color-names

<section-header>

Figure 1.9. Cotidal chart. Tide phases relative to Greenwich are plotted for all the world's oceans. Phase progresses from red to orange to yellow to green to blue to purple. The lines converge on anphidromic points, singularities on the earth's surface where there is no defined tide. [Winfree, 1987 #1195, p. 17].

Quantitative color encoding

Sequential color scale

Constrain hue, vary luminance/saturation Map higher values to darker colors

Diverging color scale

Useful when data has a meaningful "midpoint" Use neutral color (e.g., grey) for midpoint Use saturated colors for endpoints

Limit number of steps in color to 3-9

Design of sequential color scales

Hue-Lightness *(Recommended)* Higher values mapped to darker colors ColorBrewer schemes have 3-9 steps

Hue Transition Two hues Neighboring hues interpolate better Couple with change in lightness

Diverging color scheme

Diverging color scheme

Hue Transition

Carefully handle midpoint

- Critical class
 - Low, Average, High
 - 'Average' should be gray
- Critical breakpoint
 - Defining value e.g. 0
 - Positive & negative should use different hues

Extremes saturated, middle desaturated

Hints for the colorist

Use only a few colors (~6 ideal) Colors should be distinctive and namable Get it right in black and white Respect the color blind